Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Bull Malays Math Sci Soc ; : 1-16, 2022 Apr 13.
Article in English | MEDLINE | ID: covidwho-1787906

ABSTRACT

The COVID-19 (SARS-CoV-2 virus) pandemic has led to a substantial loss of human life worldwide by providing an unparalleled challenge to the public health system. The economic, psychological, and social disarray generated by the COVID-19 pandemic is devastating. Public health experts and epidemiologists worldwide are struggling to formulate policies on how to control this pandemic as there is no effective vaccine or treatment available which provide long-term immunity against different variants of COVID-19 and to eradicate this virus completely. As the new cases and fatalities are recorded daily or weekly, the responses are likely to be repeated or longitudinally correlated. Thus, studying the impact of available covariates and new cases on deaths from COVID-19 repeatedly would provide significant insights into this pandemic's dynamics. For a better understanding of the dynamics of spread, in this paper, we study the impact of various risk factors on the new cases and deaths over time. To do that, we propose a marginal-conditional based joint modelling approach to predict trajectories, which is crucial to the health policy planners for taking necessary measures. The conditional model is a natural choice to study the underlying property of dependence in consecutive new cases and deaths. Using this model, one can examine the relationship between outcomes and predictors, and it is possible to calculate risks of the sequence of events repeatedly. The advantage of repeated measures is that one can see how individual responses change over time. The predictive accuracy of the proposed model is also compared with various machine learning techniques. The machine learning algorithms used in this paper are extended to accommodate repeated responses. The performance of the proposed model is illustrated using COVID-19 data collected from the Texas Health and Human Services.

2.
Math Biosci Eng ; 17(5): 6085-6097, 2020 09 14.
Article in English | MEDLINE | ID: covidwho-966058

ABSTRACT

The whole world is devastated by the impact of the COVID-19 pandemic. The socioeconomic and other effects of COVID-19 on people are visible in all echelons of society. The main goal of countries is to stop the spreading of this pandemic by reducing the COVID-19 related new cases and deaths. In this paper, we analyzed the correlated count outcomes, daily new cases, and fatalities, and assessed the impact of some covariates by adopting a generalized bivariate Poisson model. There are different effects of duration on new cases and deaths in different countries. Also, the regional variation found to be different, and population density has a significant impact on outcomes.


Subject(s)
Coronavirus Infections/epidemiology , Coronavirus Infections/mortality , Pneumonia, Viral/epidemiology , Pneumonia, Viral/mortality , Algorithms , COVID-19 , Global Health , Humans , Models, Statistical , Pandemics , Poisson Distribution , Population Density , Probability , Regression Analysis , World Health Organization
SELECTION OF CITATIONS
SEARCH DETAIL